Introduction
Through the latest OpenTelemetry integration, you can seamlessly incorporate telemetry data types such as logs into OpsRamp, ingest these data streams directly from the pre‑configured OpenTelemetry collector, and enable comprehensive monitoring and analysis within your operational environment.
To get started with the OpenTelemetry Integration:
Instrument your application using the OpenTelemetry SDK.
Configure the OpenTelemetry Collector
Modify your config.yaml file for the OpenTelemetry Collector to include the OpsRamp OTLP exporter.
Note
If your OpenTelemetry Collector is deployed in a Kubernetes cluster, edit the corresponding ConfigMap.Exporter Configuration
Add the OpsRamp OTLP exporter configuration:
exporters:
otlp/opsramp_logs:
endpoint: <endpoint>
headers:
"tenantId": <tenantId>
"X-OpsRamp-Token": <Token>
"source": "OpenTelemetry"
compression: "gzip"
tls:
insecure: false
insecure_skip_verify: true
Batch Processor Configuration
Enable batch processing to improve data compression and reduce outgoing connections:
processors:
batch:
timeout: 1s
send_batch_size: 1000
send_batch_max_size: 2000
Optional: Kubernetes Attributes Processor
Add Kubernetes attribute extraction if you’re running in a Kubernetes environment:
k8sattributes:
extract:
metadata:
- k8s.namespace.name
- k8s.deployment.name
- k8s.statefulset.name
- k8s.daemonset.name
- k8s.cronjob.name
- k8s.job.name
- k8s.node.name
- k8s.pod.name
- k8s.pod.uid
- k8s.pod.start_time
passthrough: false
pod_association:
- sources:
- from: resource_attribute
name: k8s.pod.ip
- sources:
- from: resource_attribute
name: k8s.pod.uid
- sources:
- from: connection
Service Pipeline Configuration
Configure the service block to include the exporter, processor:
service:
pipelines:
logs:
receivers: [otlp]
processors: [batch]
exporters: [otlp/opsramp_logs]